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SUMMARY 
This paper proposes a theory of collisions between small drops 

in a turbulent fluid which takes into account collisions between 
equal drops. The drops considered are much smaller than the 
small eddies of the turbulence and so the collision rates depend 
only on the dimensions of the drops, the rate of energy dissipation E 
and the kinematic viscosity u. Reasons are given for believing 
that the collision efficiency for nearly equal drops is unity, and the 
collision rate due to the spatial variations of turbulent velocity is 
shown to be N =  1.30(r1 + r2)3nln2(~/~)1/2, valid for r1/y2 between 
one and two. A numerical integration has been performed using 
this expression to show how an initially uniform distribution will 
change because of collisions. An approximate calculation is then 
made to take account also of collisions which occur between drops 
of different inertia because of the action of gravity and the turbulent 
accelerations. 

The results are applied to the case of small drops in atmospheric 
clouds to test the importance of turbulence in initiating rainfall. 
Estimates of E are made for typical conditions and these are used to 
calculate the initial rates of collision, the change in mean properties 
and the rate of production of large drops. I t  is concluded that 
the effects of turbulence in clouds of the layer type should be small, 
but that moderate amounts of turbulence in cumulus clouds could 
be effective in broadening the drop size distribution in nearly 
uniform clouds where only the spatial variations of velocity are 
important. In heterogeneous clouds the collision rates are 
increased, and the effects due to the inertia of the drop soon 
become predominant. The effect of turbulence in causing 
collisions between unequal drops becomes comparable with 
that of gravity when E is about 2000 cm2 s ~ c - ~ .  

1. INTRODUCTION 
It has been agreed for many years that while the initial process in the 

formation of clouds in the atmosphere must be one of condensation from 
the vapour phase, this process is not sufficiently rapid for the small water 
droplets to grow to raindrop sizes in the times usually available. Bergeron 
(1933) suggested that ice crystals might play a crucial part in the mechanism 
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by which raindrops are formed, but observational evidence since that time 
has proved that heavy rain can fall from clouds whose temperatures are 
nowhere below the freezing point. 

Various workers have therefore developed the idea of the growth of 
raindrops by the coalescence of liquid cloud drops. These theories suppose 
that drops Iarger than the mean drop size fall through the cloud under the 
action of gravity, and sweep up some of the smaller drops in their path. 
The rate of growth of the falling drops can be calculated and is found to be 
a rapidly increasing function of the size of the drop. 

Squires (1952) has investigated theoretically the size distribution of 
cloud drops condensing on hygroscopic nuclei, and has concluded that 
only under rather special circumstances can a few droplets considerably 
larger than the mean be formed. If, for example, there are a few giant 
nuclei, these will quickly grow, by condensation, to such a size that the 
above coalescence mechanism will become important. Otherwise, the 
calculated drop size distribution is more uniform than that observed, as is 
also clear from the work of Howell (1949), and the mean size is smaller rhan 
that for which the above coalescence mechanism becomes more important 
than condensation. 

A natural suggestion therefore is that turbulence in a cloud might lead 
to collisions among the drops, thus giving a greater spread of cloud drop 
sizes and providing the larger droplets on which raindrops could form. 
(Bowen (1950) has indeed considered the history of drops of double the 
mass of the rest of the drops, these drops being supposed formed by the 
random collision of two drops, but the mechanism of such collisions was not 
examined.) East & Marshall (1954) have discussed the previous (mostly 
qualitative) suggestions which have been made about the role that turbulence 
could play in precipitation, and they propose a new theory in which the 
effect of random motions is regarded as being equivalent to the action of an 
increased gravitational field. It is concluded that turbulence could be 
important in a heterogeneous cloud if the random air acceleration is com- 
parable with the acceleration due to gravity. It should be noted that the 
process pictured by these authors is still ineffective if the drops are small, 
and that they predict zero collision rates in homogeneous clouds. 

It is the purpose of the present investigation to discuss a mechanism 
due to turbulence which gives collisions between equal drops and which 
employs a more realistic model of the nature of the turbulent motion than 
that used by East & Marshall. The collision frequencies are found in 
terms of the rate of energy dissipation per unit mass in the cloud and this 
quantity is estimated from the large scale properties of the air motion inside 
the clouds. 

2. THE NATURE OF THE TURBULENT MOTION 

East & Marshall regarded the turbulence as equivalent in its effects to 
a random motion in time of the whole air parcel containing all the drops, 
and neglected the spatial variations which are surely an essential feature of 
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turbulent motion. All collisions on their model are therefore due to the 
different motion, relative to the air, of drops of different sizes; and hence 
they found that equal drops did not collide. The effect of the spatial 
variations, however, is to give neighbouring drops different velocities and 
thus cause collisions, whatever the ratio of the sizes of the drops. 

The cloud droplets that we are considering are usually smaller by at 
least an order of magnitude than the length scale of the small eddies of the 
turbulence, and so the relative motion of two neighbouring drops will be 
governed by the small scale motion. It has been pointed out by Batchelor 
(1950) and others that because the Reynolds number for turbulent motion 
in the atmosphere is usually large, the similarity theory of turbulent motion 
will hold for the small scale motion. This theory implies that for scales 
of motion sufficiently small compared to the energy-containing eddies, the 
motion is isotropic and the mean values of quantities related to the turbulence 
will depend only on the kinematic viscosity Y and the rate of energy dissipation 
per unit mass E, provided that the quantities concerned depend strongly on 
the small scale properties of the turbulence. For example, the relative 
diffusion of a cloud of smoke can be treated in this way, whereas diffusion 
from a fixed source can not, since in the latter case the large eddies are also 
important. It follows that the effect of turbulence in causing collisions 
between neighbouring droplets will also depend on the rate of turbulent 
energy dissipation per unit mass E, and it will be necessary to make an 
estimate of this quantity in clouds under various conditions. We shall do 
this first before describing the mechanism of collisions. 

Brunt (1939) has given as an average value in the lowest few kilometres 
of the atmosphere E = 5 cm2 Few direct measurements which allow 
E to be estimated in clouds have been made, but R. J. Taylor (1952) has 
deduced values of c of the order of 1000cm2sec-3 close to the ground in 
moderate winds. Another approach to the problem is available however. 

The results of laboratory experiments (e.g. Batchelor & Townsend 
1948) have indicated that the rate of turbulent energy dissipation is usually 
of order u3/l, where u is a root-mean-square turbulent velocity and 1 is a 
length scale associated with the energy-containing eddies. Measurements 
of accelerations experienced by aircraft in bumpy conditions indicate that 
fluctuating velocities of a few metres per second are common, with corre- 
sponding eddy sizes of the order of tens or hundreds of metres. If we take 
as typical figures, u = 2 metres/sec, I =  50 metres, we obtain€= 1600 cm2 
We might suppose that something less than the mean figure of E = 5 cm2 sec-3 
would be applicable to stratiform clouds where there is a small mean 
velocity, and take a larger value say E = 1000 cm2 as an estimate of the 
conditions in turbulent cumulus clouds. However, it may be possible to 
make better estimates than these for the different types of clouds. 

P. G. s.fJ.1Mt a d J .  S.  Turner 

3. DISCUSSION OF THE COLLISION PROCESS 

There are two ways in which turbulence causes collisions between 
Firstly, there are the spatial variations of the neighbouring droplets. 
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turbulent motion referred to previously. Collisions due to this process 
can conveniently be called ‘collisions due to the motion of the droplets 
with the air’. Secondly, each droplet is moving relative to the air sur- 
rounding it, owing to the fact that the inertia of a droplet is different from that 
of an equal volume of air. It follows that neighbouring droplets of unequal 
size will have different velocities (since the inertia of a droplet depends 
on its size), and this also will lead to collisions. This process is called 
‘ collisions due to the motion relative to the air ’. The latter process will 
not give collisions between droplets of equal sizes, such collisions being 
due to the first process. 

Before we can calculate the rate at which collisions between droplets 
occur, it is necessary to consider the effect that the presence of a droplet 
has on the motion of neighbouring droplets, that is, we must consider the 
distortion of the flow due to the presence of a drop. A measure of this 
distortion is the collision efficiency, which can be defined as that proporiion 
of drops which would have collided in the absence of distortion, actually 
to do so. It is clear that the collision efficiency must be dependent on the 
nature of the flow. Collision efficiencies were calculated by Langmuir 
(1948) for the case of small drops suspended in the steady laminar flow 
around a fixed large sphere. His numerical results are only likely to be 
accurate in cases where the basic assumptions are satisfied, although they 
have been extensively applied beyond their range of validity by others, and 
by East & Marshall in particular. It is difficult to justify the application 
of Langmuir’s results to the present problem, since we are concerned with 
a case in which the colliding drops are of nearly equal sizes. Recent 
measurements, by Telford, Thorndike & Bowen (19SS), of collection 
efficiencies for nearly equal drops somewhat larger than cloud drop sizes, 
have indeed given values considerably higher than would be predicted by 
an application of Langmuir’s theory. 

Now the Reynolds number of the relative motion of two nearly equal 
approaching cloud droplets will usually be much less than one, and some 
relevant experimental evidence for this range of Reynolds numbers is 
provided by the experiments of Manley & Mason (1952, 1955). They 
observed the collisions between glass spheres and between air bubbles sus- 
pended in a uniformly sheared viscous liquid, and showed that in these 
circumstances, the collision efficiency is indeed unity, that is, the distortion of 
the flow does not influence the collision rate. 

It thus seems that, in the absence of further evidence, it is not unreason- 
able to take the collision efficiency of nearly equal droplets as unity ; this is 
equivalent to neglecting altogether the distortion of the flow by a drop. 

We are interested primarily in collisions between nearly equal drops, 
and as a beginning we shall confine our attention to collisions due to motion 
with the air. Collisions due to motion relative to the air are not unimportant, 
but this process does not give collisions between equal drops. Later, we 
shall make an estimate of the relative importance of the two processes. 

It is useful to keep in mind the qualitative picture of the local shearing 
motions which lead to collisions between drops carried along with the flu$. 

B 2  
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For two close points in a turbulent fluid, the relative motion is that of 
uniform strain. Taking an origin at the centre of one drop and the 
coordinate axes in the directions of the principal rates of strain, the stream- 
lines of the relative motion in one of the coordinate planes are as shown 
in figure 1. The other drops are moving with the air along these stream- 
lines and since we neglect the distortion of the flow field due to the presence 
of the drops, for the reasons mentioned above, the collision rate of the 
‘fixed drop’ with other drops is just the flux of fluid inwards across the 
surface of a sphere, concentric with the fixed drop and of radius equal to the 
sum of the radii of the two approaching drops, multiplied by the number 
density of the other drops. The equivalent calculation for a uniform 
laminar flow assumes, of course, that all drops in a cylinder parallel to the 
flow and containing the effective cross-section of the fixed drop should meet 
that drop. 

Y 

- x  - 

-Y  

Figure 1 .  Streamlines of the relative motion in one of the principal planes. 

4. COLL~SIONS BETWEEN DROPS MOVING WITH THE AIR 

We now proceed to the calculation of this collision rate. Let the mean 
concentrations of two sizes of drop in a given population be n, and nz per 
unit volume, and their radii rl and r2 respectively. The collision radius 
for a pair of drops, one of each type, will be just the sum of the two radii, 
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Now the mean flux of 'fluid into a sphere of radius R R = r l + r 2  say. 
surrounding one drop is 

-1 wTdS 
W T < 0  

where w, is the radial component of the relative velocity, and the bar denotes 
a mean over many realizations of the motion. If we suppose the turbulence 
to be isotropic, this mean will be equal to the mean at a fixed point in space, 
since there is no correlation between the position of a drop and the properties 
of the turbulence. If the drops are randomly distributed and moving with 
the air, the collision rate is thus 

- n  n wr dS, 
1 2J w,<o 

and, by the similarity hypothesis, the integral will be a function of E and V, 
and of the length R. 

T o  evaluate the integral, we note that the equation of continuity of the 
fluid gives 

I w,dS+ w,dS=O. 
. w,<o _j w,>o 

Hence, 
- 

- I' w,dS=$! I w , ( d S = & j  6 1 d S  
I W+<o 

entire sphere entire sphere 

and since the small eddies are isotropic, the last expression becomes 
277R2m, where w, is the radial relative velocity along the radius parallel 
to the x-axis. Since R is usually small compared with the length scale of the 
small eddies (as will be shown in $6),  Iw,(=Rlau/axl,  where u is the 
x-component of the velocity. 

Further, the mean square of the velocity gradient is related to E and Y 
through the expression (auiax)2 = c/15v (Taylor 1935). We now assume 
that au/ax is normally distributed and obtain I au/ax( = ( 2 ~ / 1 5 ~ ) ~ / ~ .  (&/ax is 
only approximately normally distributed but the error so introduced in 
the present context is not large; see Townsend (1947).) The collision 
rate is thus 

- -  

= u12nln2, say. (1). 
We can now use (1) to find the rate of growth of a population of equal 

drops. Let us suppose that initially we have a uniform size distribution of 
drops of type 1. Larger drops will form by multiple collisions, and we 
denote by n ,  the number of drops with s times the mass of a type 1 drop- 
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We also suppose that when two drops collide, they coalesce. 
following equations hold (Smoluchowski 1917), 

P .  G. Sagman a d J .  S .  Turner 

Then the 

-allnf - a12nln2 - a13nln3 - . . . dn1 - -- 
dt 

2 - = ialln: - a12n1fi2 - a,,.; - az3n2n3 - . . . 

+3 = a12n1n, - tCl3nln3 - a23n2n3 - a,,.: - . . . 

dn4 - = a13n13 + +a2,.: - Ccl4nln4 - a24n2n4 - . . . 
dt 

dt 
. . . . . . . . . . . . . . . . . .  

Equations (2) can be solved in closed form if u ji = 2ct, that is, if it is assumed 
that the collision rate is independent of the particle size, and the solution is 

no( an,t)"-l no 
( l + a n o y l '  n= ~ 

n,  = 
l+anot ' (3) 

where n is the concentration (total number of drops per unit volume) after 
time t ,  no being the initial value. This solution was employed by Schumann 
(1940) in his study of the size distribution of fog particles, although he did 
not there discuss the effects of turbulence quantitatively. However, it is 
not satisfactory to neglect the dependence of collision rate upon drap size 
without further investigation and we therefore integrated equations (2) 
numerically. It was found that (3) can indeed lead to a serious under- 
estimate of the number of large drops formed in a given time. 

The equations (2) may be rewritten in a convenient dimensionless form 
if nJno and K= 1 * 3 0 t r ~ ( ~ / v ) ~ / ~ n ,  are used as variables. Thus all the 
quantities which are given in a particular application are absorbed into the 
quantity K .  The numerical integration was carried out over short intervals 
of K= 6 x by an iterative process, assuming a value for mean concen- 
trations during the interval, working out the number of drops of each size 
produced and removed, and checking the assumed values. 

The integration was continued until the total number of drops was 
reduced to two-thirds of the initial value, that is, until the mean drop mass 
increased by 50%. The effect of multiple 
collisions in broadening the drop size distribution is shown in figure 2, 
where the results of our numerical integration are plotted. The numbers 
of drops of each size up to eight times the original mass are plotted on a 
logarithmic scale for three values of K. For comparison, the numbers 
calculated assuming a collision rate independent of size (i.e. using (3)), are 
also shown. (The lines in the figure are intended for guidance, and have 
no meaning in themselves.) It is clear that this approximation under- 
estimates the number of eightfold drops present at a given time by a factor 
of twenty or more, and that the discrepancy increases with size. As a 
method for estimating the rate of change of the mean properties, the 
approximation is reasonable provided K is not too large. 

At this stage, K =  1.044 x 10-l. 
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Let us now use the result of the numerical integration to estimate the 
time necessary for the mean mass of cloud drops to increase by 50%. We 
have 1 . 3 O t r ~ ( ~ / v ) ~ ’ ~ t z ,  = 1.044 x 10-1 in c.g.s. units, or wt(c/v)1/2 = 3-36 x lo5, 
where w is the liquid water content in gm/cubic metre and t is the time in 

1 . 0  ; 

lo-’ 

10-2 

- n, 
nl 

I O - ~  

I 0 - 4  

i 0 - 5  

K =  0 

I 2 3 4 5 6 7 8 

Numbar of ulcmantary drops 

Figure 2. Distribution of drop sizes produced from an initially uniform population. 
Circles show the result of the numerical integration, and crosses show the 
result of a calculation assuming the collision rate to be independent of size. 
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seconds. So with typical figures of w =  l-Sgm/cubic metre and v=O.17 
cm2 sec-l, we obtain as the time for the mean mass to increase by 50%, owing 
to the assumed motion .with the air, 

t = 4.0 x lo4 seconds = 11 hours, if E = 5 cm2 s ~ c - ~ ,  
t = 2.8 x lo3 seconds = $ hour, if E = 1000 cm2 S ~ C - ~ .  

Thus, the motion of the drops with the air will affect the mean properties 
of a cloud rather slowly, except under conditions of vigorous turbulence. 

In applying these ideas to the initiation of rainfall, however, we are 
interested primarily not in how the average drop size changes, but in the rate 
a t  which a few large drops form. Let us, for example, see how frequently 
the double drops required by the Bowen theory will form. He assumed 
uniform drops of l o p  radius, and a liquid water content of 1 gm/cubic 
metre, corresponding to a concentration of 240 drops/cm3. The rate of 
production of double drops initially is then 3-0 x ~ O - ~ ( E / V ) ~ / ~  ~rn-~sec-l. 
This shows that with c = 5 cm2 secd3, 0.04% of the total number are double 
drops after one minute, and with ~ = l O O O c r n ~ s e ~ ~ ,  0.6% are double 
drops after one minute. Thus moderate amounts of turbulence should 
produce a significant concentration of double drops. 

Again, if we apply the numerical results for multiple collisions to a case 
in which n = 600 drops/cm3 initially, w = 1.5 gm/cubic metre and E = 100 
cm2sec-3, we find that in 16 minutes there will be 100 drops per litre with 
mass equal PO or greater than four times the original mass, and after 90 
minutes, 100 drops per litre with mass equal to or greater than eight times 
the original. For sizes greater than this, the rates of growth increase 
rapidly, but so too does the relative importance of other processes, as will 
be seen in the following section. 

P. G. Sagman andJ. S .  Turner 

5. MOTION RELATIVE TO THE AIR 

In this section we shall consider approximately the motion of the drops 
both with the air and relative to the air, and also the relative motion of the 
drops due to gravity. In order to do this, we shall use a model of the 
collision process which will enable us to take all three processes into account 
at the same time. This will provide us with an indication of how the effects 
of the three processes should be added in a case in which they are calculated 
separately in some other way. It is to be noted, however, that the assumption 
that the collection efficiency is unity (see $ 3 )  is only likely to be valid for 
nearly equal drops, and so the following calculation will not apply to drops 
of very different sizes". 

The probability distribution of 
the relative velocity of two drops is in general a function of their separation. 
When the separation of the centres of the drops is small compared with the 

* The experiments of Manley & Mason indicated a change in the relative motion 
of two colliding drops when the ratio of the larger radius to the smaller was greater 
than two. When the ratio was less than two, they observed the collision efficiency 
to be unity. 

The argument will proceed as follows. 
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length scale of the small eddies (it is shown in $ 6  that in clouds the drops 
are usually small enough for this to be possible), this probability distribution 
can be deduced from the equation of motion of a drop and a knowledge of 
the statistical properties of the small eddies of the turbulence, provided 
we neglect the distortion of the flow by a drop for the reasons given in $ 3. 
We shall then have, in particular, the probability distribution of the relative 
velocity of two drops just before they collide. We denote by P(w)dw 
the probability that the relative velocity w of two drops just before they 
collide lies in the range w, w + dw. 

Let us calculate the rate of collision between drops of radius rl and 
r2, whose number densities are n, and n2 respectively, in terms of P(w). 
A collision will take place when the separation of the centres of the drops 
is R = r1 + r2. We shall consider the collisions that occur in a small interval 
of time at, where 6t  is small compared to the time scale of the small eddies, 
and we may suppose that the drops move in straight lines with constant 
velocity during the interval 6t. For the purpose of the calculation, we may 
suppose one of the colliding drops, of type 1 say, to be at rest, the velocity 
of the other drop just before the collision being w. Then a collision will 
take place in the interval S t  if, at the beginning of the interval, the centre of 
the second drop was somewhere in a volume nR2wSt, where w = I w I. We 
now integrate over all values of w and multiply by the number density of 
drops of type 2 and thus obtain the number of collisions between the 
‘stationary’ drop and the other drops in the time St. On multiplying by 
the number density of drops of type 1 and dividing by S t ,  we obtain the 
collision rate as 

N =  nR2nln2 \!IwP(w) dw. (4) * 
It  is permissible to multiply by the number density in the above manner 

only when the mean velocity of two colliding droplets is statistically inde- 
pendent of their relative velocity ; for if this were not so, the local concentra- 
tion of droplets would be related to the relative velocity. However, the 
mean velocity is controlled by the large energy-containing eddies and the 
relative velocity by the small eddies, and it is known that the large and small 
eddies are statistically independent when the Reynolds number of the 
turbulence is large (see Taylor 1938). 

We see from equation (4) that the collision rate can be found as soon as 
P(w) is known. P(w) contains the effects of the spatial variations of 
velocity in the fluid (giving collisions due to the motion with the air), the 
turbulent accelerations (giving collisions due to the motion relative to the 
air), and gravity. It could be expressed formally as a complicated function 
of these three effects, but in that form it would not be possible to evaluate 
the integral in (4) in finite or simple terms. Now the variance of w can be 
evaluated without difficulty from the equations of motion of the drop and 

*Further details of the argument leading to (4) may be found in Chapman & 
Cowling, Mathematical Theory of Non- Uniform Gases, Oxford University Press, 1952, 
pp. 60, 89, 90. 
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the statistical properties of the turbulence ; and the method we shall use in 
order to avoid the above difficulty and to give integrals which we can 
evaluate, is to replace P(w) by a simpler function which has the same 
variance. We shall justify this method by showing that, in the special 
cases when either motion with the air or gravity alone is effective, it does 
not lead to significant error. 

Before discussing the explicit form that we shall take for P(w), it is 
convenient to calculate the variance of w. To do this, we consider two 
droplets which have velocities c,  and c2 just before they collide. We denote 
by u1 and u, respectively the ' undisturbed ' velocities of the air surrounding 
these drops, so that the relative velocities between the drops and the air 
surrounding them are q, = c1 - ul, q, = c2 - u2. Further, w = c2 - cl.  
It follows that the variance of w is given by 

var (w) = var (c2 - c,) = var (q2 - 4,) + var (u2 - ul), ( 5 )  
provided we suppose u2 - u1 to be statistically independent of q, and q,. 
The second term is easily calculated since 

var(u,-u,)=R2 - =5R2 - = & R 2 - ,  (Ey (3 :! 
in view of the isotropy of the small eddies. 

which is 
T o  calculate the first term, we-use the equation of motion of a drop, 

dc 1 
dt 7 
- = - -  

where didt denotes differentiation following a drop, g is the acceleration 
due to gravity, 7 is the relaxation time of the droplet (T = 2rap0/9p for small 
spherical drops obeying Stokes' law), r is the radius of a drop, po is the 
density of the drops, p that of the air, and p the viscosity of the air. Hence, 

Now if T is small compared with the time scale of the smallest eddies 
(and this will be shown in $ 6  to be usually the case), we may neglect the 
first term on the left-hand side of (7)  and replace (du/dt)2 by (DuIDt)P, 
and obtain 

We have already taken account of the relative motion of drops due to the 
difference between u, and u,, so that in considering q, and q2 we can suppose 
that the air velocities near two close particles are the same. (This is 
equivalent in effect to the assumption inherent in the work of East & Marshall 
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Thus, when they considered a random motion of the air parcel as a whole.) 
the correlation coefficient between q, and q2 is unity and 

var(q2-ql)=(-r1-T2)2 1- - 3 - +ga . ( pPo)e[l m I 
Equation (5) then gives 

var (w)  = 3( 1 - 2):" ( T ~  - T , ) ~ (  $)2 + (1 - $2 (7, - ~ ~ ) ~ g ~  + QRa5 . (8) 

We now return to the discussion of P(w).  We shall replace P(w)  by 
the function 

~ ( w )  = (9":" exp ( - pw2>, (9) 

where ,8 is chosen so that the variance given by this distribution is the 
same as that for P(w),  that is, 8P-1 is equal to the expression (8). This seems 
to be the function that corresponds most closely to physical reality and yet 
renders the integration of (4) simple. If the relative velocity were due 
only to motion relative to the air, it seems likely that (9) would be accurate. 
Further, although the use of (9) replaces the constant relative velocity that 
would arise from the differential fall of droplets of different sizes under 
gravity alone by a random relative velocity with the same mean square, it 
will be seen below that the error so introduced is not large. 

When we consider the relative velocity due to the spatial variations of 
velocity in the fluid, however, we find that the choice of the distribution (9) 
is not free from inconsistency. T o  see what is happening, let us suppose 
that the droplets are moving entirely with the air, that is, that the relative 
velocity due to gravity and motion relative to the air is zero. It seems that 
in this case (9) is inconsistent with the isotropy of the small eddies. For 
instance, if the separation of the two droplets is parallel to the x-axis, it 
follows from the isotropy that ( w 2 ) 2  = &(w,)2 = &(wz)2 ; but according to 
equation (9), ( w ~ ) ~  = (w,)2= (w,)2. However, despite this anomaly, the 
result obtained by the use of (9) will be shown to be not too different from 
that obtained in $4, where the model used is consistent with the isotropy 
of the small eddies but still assumes the normal distribution of the separate 
components of the relative velocity. 

On substitutinq in (5) 
and integrating, we obtain 

- - 
- - -  

We now use (9) to calculate the collision rate. 

N =  7rR2n,n2 ! j j - w (  E)'" exp ( - pw2) dw = 2R2n,n2 
T i  

( T ~ - T ~ ) ~ ~ ' +  - R a -  q 1 l 2 .  (10) 9 1' 
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The first two terms are zero when 71 and 72 are zero and the drops move 
with the air, when 71 = r2 and the drops are identical, or when p = p o  and the 
drops have the same density as the ambient fluid. When one of these is 

E = S  cm2 s e c 3  

~=1000cm2sec-3 
- 

the-case, (10 )  gives 
N =  $R2nln2(T) 2T€ 1P = l.67RSn,n2( I;> 1/2 . 

_ _ _ ~  
3.4 x 

4.8 x lop2 

It  will be noticed that the constant here differs from that of equation (l), 
for the reasons mentioned above. Further, in the case when there is no 
turbulence, (10) gives 

E = S  cm2 s e c 3  

~=1OOOcrn~sec-~ 
_ _ _ ~ _ _  

whereas the exact calculation for this case, which is easily done, gives 

3 .8  x 1.1 x 
--___ 
1 . 4 ~ 1 0 - ~  4 * 0 ~ 1 0 - ~  ' 

A4gain we note that the difference in the constant is quite small. 

6. COMPARISON OF THE VARIOUS COLLISION MECHANISMS 

We now use (10 )  to compare the relative importance of the two turbulent 
collision mechanisms in clouds. It must first be shown that the radius r 
and relaxation time T = 2r2p0/9p of the droplets are usually small compared 
with the length scale ( ~ ~ / r ) l ' ~  and time scale ( Y / E ) ~ / ~  of the small eddies, 
respectively, since the arguments leading up to (10) depend upon these 
conditions being satisfied. Now for drops of radius 7 p ,  7 -6 -3  x 10-4 
seconds, and for drops of radius 20 p, r = 5.2 x lop3 seconds. The corre- 
sponding values of ~ ( E / v ) ~ ' ~  and r ( r / ~ ~ ) l / ~  are shown in the table. I t  can be 
seen that assumed conditions will be satisfied except perhaps for the largest 
drops in very strong turbulence. 

7 ( € / V ) ' / "  Y (€/V3)1'4 

I r = 7 p  r7=2op 
___-- 

2.8 x lo-' 

4.0 Y 10-1 

I r = 7 p  r=20p 

The expression (10 )  may be evalu ed in terms of known quantities by 
means of a result obtained by Batchelor (1951),  who showed that 

(g)' = 1.3V-1/2E3/2 

approximately when the Reynolds number of the turbulence is large. 
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Hence, the ratio of the first term to the third in (10) is 
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for water drops in air, where rl and r2 are the drop radii in centimetres, the air 
viscosity has been taken as 1-72 x 10-4c.g.s. units, and p as 1.00 x 
gm/cm3 (values at 0" C and 800mb). The ratio of the two terms is unity, 
that is, the effects are comparable when r1 - r2 = 2.3 p for E = 5 cm2 s ~ c - ~ ,  
and when rl - r2 = 0.6 p for E = 1000 cm2 S ~ C - ~ .  

Thus, except for the very small cloud droplets, the collision rates will 
increase to several times the values in $4 when one drop is a few times the 
mass of the other ; and eventually the collisions due to turbulence in hetero- 
geneous clouds will be dominated by the motion relative to the air. (It 
should be emphasized again that the theory developed here is not likely to 
remain valid when the droplets become very different in size.) 

It is also clear from (10) that the motion due to gravity and the motion 
of the drops relative to the air due to turbulence become comparable in 
their effects when the root-mean-square acceleration is of the same order 
as the acceleration due to gravity g ;  using (10) the condition for equality 
of the effects is g=2v-1/4~3/4, which corresponds to ~=2100 cm2 ser3 .  
Thus what we have called vigorous turbulence, with E = 1000 cm2 ser3 ,  
would be less effective than gravity in causing collisions. 

Reviewing the results then, we have shown that if the low collection 
efficiencies calculated for uniform streaming and two drops of very different 
sizes are rejected as irrelevant for the case ot nearly equal drops, considerable 
rates of coalescence are predicted in turbulent air, even in clouds with very 
uniform size distributions. In this latter case, the first collisions are due 
to  the drops moving with the air, a process which does not seem to have 
been taken into account in previous theories. Particularly for the small 
drop sizes, where condensation is also important, the collisions of nearly 
equal drops concurrently with the condensation could lead to a broadening 
of the distribution of cloud drop sizes. As the size increases, and the range 
of sizes becomes larger, collisions due to the different relative motions 
between drops and the air (induced by the turbulence and a steady fall 
under gravity) will become predominant. Our theory does not allow us to 
follow the growth of a drop right up to raindrop sizes. 

The magnitudes estimated for the initial collision rates are such that the 
properties of stratiform clouds would be affected rather slowly, whereas 
in a vigorous cumulus updraught the rate of production of larger drops 
might be sufficient to initiate the formation of rain. Thus we are not faced 
with the embarrassment of predicting that all clouds should fall out as rain. 
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